Importance of Forage Fish in the California Current

Julie A. Thayer, Ph.D.

Overview

- Definitions
- Forage species ecology
 - Population dynamics
 - Climate and other effects
 - Fisheries effects
 - Predators & their needs

Definitions

CCS forage species

- Small pelagics (anchovy, sardine, herring, myctophid)
- Juveniles of predatory fishes (rockfish, hake)
- Invertebrates (krill, shrimp, squid)

Comprehensive definition

- 1. Holds key role in the ecosystem *(is important in predator diet)*
- 2. Feeds predominantly on plankton
- 3. Forms dense schools
- 4. Small size (<30cm)

Forage Species' Ecology

Population dynamics

- Small pelagics' natural population fluctuations

(known, although mechanisms not fully understood)

- Invertebrates are "bugs"
 - some live <1yr, some longer
 - can "shrink & sink"

- Juveniles depend on adult populations

Climate & Other Effects

-Climate effects

- ENSO, PDO (warm/cool regimes)
- Climate change (trending temperatures, increasing variability)
 - -Ocean acidification
 - -Disease, red-tide outbreaks
 - -Ecosystem degradation (pelagic, tidal/subtidal)
- Species' interactions (competition, predation, non-natives)
- -Other non-fisheries human influences
 - Direct destruction of habitat
 - Increased pollution/runoff
 - Wave energy generation, desalinization, etc.

Effects of Fishing

- Ecological and population "viability"
 - Forage population declines are due much to <u>climate</u> and some to <u>harvest</u> but causes not separable

- Fishing makes populations more susceptible to climate (*Hsieh et al. 2006*)

Ultimately, the question is whether fishing has resulted in populations visiting ecological states that would not have occurred naturally.

Who are the Predators?

- Whales & dolphins
- Seals & sea lions
- Seabirds & sea turtles
- Sharks & rays
- Predatory fishes like salmon & tuna

Predator Needs

- -Diverse forage base
- -Spatio-temporal availability

 (predator-prey mis-match more frequent w/ climate change)
- How much food? (combo of quantification approaches)
 - Bio-energetic modeling
 - Functional & numerical responses
 - Ecosystem modeling

Top 10 CCS Forage Groups

Forage species	presence in predator diet
Pacific herring (Clupea pallasi)	35%
Lantern fish (Myctophidae)	33%
Codfishes juvenile (Gadidae)	30%
Northern anchovy (Engraulis mordax)	29%
Rockfishes juvenile (Sebastes spp.)	29%
Shrimp (Crangon & Mysid)	25%
Market squid (Loligo opalescens)	24%
Sanddabs, juv. halibuts (Paralichthyidae)	20%
Krill (Euphausiidae)	19%
Pacific sardine (Sardinops sagax)	14%

Forage species	>10%	Forage species >25		Forage species	>50%
Anchovy	20%	Anchovy	11%	Squid	6%
Rockfishes juv.	19%	Squid	11%	Krill	6%
Codfishes juv.	19%	Herring	10%	Anchovy	4%
Krill	16%	Krill	9%	Herring	3%
Squid	15%	Codfishes juv.	9%	Codfishes juv.	3%
Lantern fish	15%	Rockfishes juv.	8%	Rockfishes juv.	2%
Shrimp	10%	Lantern fish	5%	Shrimp	1%
Herring	8%	Shrimp	4%	Lantern fish	0.6%
Sardine	7%	Sardine	3%	Sardine	0.6%
Sanddabs	6%	Sanddabs	2%	Sanddabs	0.6%

Local Prey Importance

Important breeding colonies in Central CA (13 seabird, 5 pinniped spp.):

- Southeast Farallon Island
 (~100,000 birds & 6,000 pinnipeds)
- Año Nuevo Island
 (~9,000 birds & 18,000 pinnipeds)

Seasonal Prey Importance

Central CA Chinook salmon diet

From Thayer et al. submitted

Inter-Annual Prey Importance

			Percent of prey in diet between years								
Predator	N (years)	Source	Krill	Market squid	Anchovy	Sardine	Herring	Rockfish (juv.)	Gadid (juv.)	Myctophid	Sanddab
Brandt's cormorant	9	Ainley et al. 1981		0-0.2	0-28		0-73	0-91	0-15		
California sea lion		Weise and Harvey 2008		5-19	7-13	61-68	0.2	3-6	2-6		0-2
Chinook salmon		Thayer et al. submitted	0-48	0-20	1-90	0-28	0-51	0-70	0-7		0-1
Common murre	4	Matthews 1983	0-36	0-15	0-47		1-24	1-43	9-30		0-11
Elegant tern	8	Velarde et al. 1994			35-98	2-59					
Pacific hake	2	Livingston 1983	0-93		0-16		0-67	0-4	0-1.3		0-1
Rhinoceros auklet	1 1/	Thayer & Sydeman 2007		0-27	8-100	0-18	0-8	0-61	0-1	0-12	
Sooty shearwater	2	Gould et al. 2000	0-1	0-2	36					1-40	
Yellowtail rockfish	2	Brodeur and Pearcy 1984	0-28	2-15			0-18	0-0.4		0-3	

Bio-energetic modeling

Seabird prey needs – Common Murre

- -Pt. Conception, CA to Cape Blanco, OR
- -Estimated prey consumption (2004) = 225,235t
- Included consumption of:

~58,000t market squid

~55,000t juvenile hake

~23,000t anchovy

~21,000t juvenile rockfish

From Roth et al. 2008

Functional Responses

 Single predator parameter vs. forage parameters

Double-crested cormorants and juvenile rainbow trout

 Determines threshold at which predator parameters are compromised

Below threshold, likelihood of bird encountering fish decreased

From Enstipp et al. 2007

Numerical Responses – CCS Data

Seabird productivity and prey abundance

Ecosystem modeling – current

- Allows integration of multiple predators in a comprehensive ecosystem context
- ECOPATH w/ECOSIM, ATLANTIS
- But has NOT been able to replicate population cycling of coastal pelagics

From Field & Francis 2006

Ecosystem modeling - needs

- Stochastic models best represent predator use of prey (which varies seasonally, inter-annually, spatially)
 (e.g., End-to-End Models: ROHMS->NPZ->IBM)
- Get away from abundance as metric of predator response (the LEAST responsive measure, may underestimate needs)
- Incorporate variance (averages do not accurately represent how predators respond to prey availability)

Ecosystem-Based Approach

- Many of top 10 forage groups in the CCS are exploited
- Ecological importance of forage species is not new issue, but improved acknowledgement and explicit management guidance needed (particularly in light of increasing climate variability)
- First step data does exist to quantify predator forage needs in the CCS – needs synthesis!

Summary

- Forage species are more than just small pelagics
- Forage species ecology affected by climate & fishing
- Whales to seabirds rely on these forage species
- Important to have diverse forage community (species richness, space & time)
- Data exist to quantify predator needs;
 need to be synthesized
- Ecosystem-Based Management